№0479 (5)

Реклама
Материал из Решебника
Перейти к навигации Перейти к поиску

Информация о задаче

Задача №479 раздела №1 "Введение в анализ" книги Б.П. Демидовича "Сборник задач и упражнений по математическому анализу" (2005 год).

Условие задачи

Найти предел [math]\lim_{x\to\frac{\pi}{4}}\tg{2x}\cdot\tg\left(\frac{\pi}{4}-4\right)[/math].

Решение

[math] \lim_{x\to\frac{\pi}{4}}\tg{2x}\cdot\tg\left(\frac{\pi}{4}-4\right)=\left|\begin{aligned}&t=x-\frac{\pi}{4};\\&x=t+\frac{\pi}{4};\\&t\to{0}.\end{aligned}\right| =\lim_{t\to{0}}\tg\left(2t+\frac{\pi}{2}\right)\cdot\tg(-t)=\\ =\lim_{t\to{0}}\ctg(2t)\cdot\tg{t} =\lim_{t\to{0}}\frac{\tg{t}}{\tg{2t}} =\frac{1}{2}\cdot\lim_{t\to{0}}\frac{\frac{\tg{t}}{t}}{\frac{\tg{2t}}{2t}} =\frac{1}{2}\cdot\frac{\displaystyle\lim_{t\to{0}}\frac{\tg{t}}{t}}{\displaystyle\lim_{t\to{0}}\frac{\tg{2t}}{2t}}=\frac{1}{2}. [/math]

Ответ

[math]\frac{1}{2}[/math]