2237-1
Реклама
Материал из Решебника
Информация о задаче
Задача №2237 параграфа №1 главы №7 "Способы вычисления определённых интегралов. Несобственные интегралы" книги Г.Н. Бермана "Сборник задач по курсу математического анализа" (22-е издание, 2002 год).
Условие задачи
Вычислить интеграл [math]\int\limits_{0}^{1}\left(e^x-1\right)^4e^xdx[/math].
Решение
[dmath] \int\limits_{0}^{1}\left(e^x-1\right)^4e^xdx =\int\limits_{0}^{1}\left(e^x-1\right)^4d\left(e^x-1 \right) =\left.\frac{\left(e^x-1\right)^5}{5}\right|_{0}^{1} =\frac{(e-1)^5}{5} [/dmath]
Ответ
[math]\frac{(e-1)^5}{5}[/math]
Заметили ошибку, опечатку, или неправильно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).