1710-1
Реклама
Материал из Решебника
Информация о задаче
Задача №1710 параграфа №1 главы №6 "Неопределённый интеграл. Интегральное исчисление" книги Г.Н. Бермана "Сборник задач по курсу математического анализа" (22-е издание, 2002 год).
Условие задачи
Найти интеграл [math]\int\sqrt{8-2x}dx[/math].
Решение
[math] \int\sqrt{8-2x}dx =\left|\begin{aligned}&d(8-2x)=-2dx;\\&dx=-\frac{1}{2}d(8-2x).\end{aligned}\right| =-\frac{1}{2}\int\sqrt{8-2x}\;d(8-2x)=\\ =-\frac{1}{2}\int(8-2x)^{\frac{1}{2}}d(8-2x) =-\frac{1}{2}\cdot\frac{(8-2x)^{\frac{3}{2}}}{\frac{3}{2}}+C =-\frac{\sqrt{(8-2x)^3}}{3}+C [/math]
Ответ
[math]-\frac{\sqrt{(8-2x)^3}}{3}+C[/math]