1705-1
Реклама
Материал из Решебника
Информация о задаче
Задача №1705 параграфа №1 главы №6 "Неопределённый интеграл. Интегральное исчисление" книги Г.Н. Бермана "Сборник задач по курсу математического анализа" (22-е издание, 2002 год).
Условие задачи
Найти интеграл [math]\int\frac{d\left(1+x^2\right)}{\sqrt{1+x^2}}[/math].
Решение
[dmath] \int\frac{d\left(1+x^2\right)}{\sqrt{1+x^2}} =\int\left(1+x^2\right)^{-\frac{1}{2}}d\left(1+x^2\right) =\frac{\left(1+x^2\right)^{\frac{1}{2}}}{\frac{1}{2}}+C =2\sqrt{1+x^2}+C [/dmath]
Ответ
[math]2\sqrt{1+x^2}+C[/math]
Заметили ошибку, опечатку, или неправильно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).