0939-1
Реклама
Материал из Решебника
Информация о задаче
Задача №939 параграфа №4 главы №3 "Производная и дифференциал. Дифференциальное исчисление" книги Г.Н. Бермана "Сборник задач по курсу математического анализа" (22-е издание, 2002 год).
Условие задачи
Найти производную [math]\frac{dy}{dx}[/math],если [math]x=1-t^2[/math], [math]y=t-t^3[/math].
Решение
[dmath]x'_t=-2t;\;y'_t=1-3t^2.[/dmath].
[dmath]\frac{dy}{dx}=\frac{y'_t}{x'_t}=\frac{1-3t^2}{-2t}=\frac{3t^2-1}{2t}[/dmath].
Ответ
[math]y'_x=\frac{3t^2-1}{2t}[/math]
Заметили ошибку, опечатку, или неправильно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).