0459-5

Реклама
Материал из Решебника

Информация о задаче

Задача №459 раздела №1 "Введение в анализ" книги Б.П. Демидовича "Сборник задач и упражнений по математическому анализу" (2005 год).

Условие задачи

Найти предел [math]\lim_{x\to{+\infty}}x\left(\sqrt{x^2+2x}-2\sqrt{x^2+x}+x\right)[/math].

Решение

[math] \lim_{x\to{+\infty}}x\left(\sqrt{x^2+2x}-2\sqrt{x^2+x}+x\right) =\lim_{x\to{+\infty}}\frac{x\left(\sqrt{x^2+2x}-2\sqrt{x^2+x}+x\right)\left(\sqrt{x^2+2x}+2\sqrt{x^2+x}+x\right)}{\sqrt{x^2+2x}+2\sqrt{x^2+x}+x}=\\ =\lim_{x\to{+\infty}}\frac{2x^2\cdot\left(\sqrt{x^2+2x}-x-1\right)}{\sqrt{x^2+2x}+2\sqrt{x^2+x}+x} =\lim_{x\to{+\infty}}\frac{2x^2\cdot\left(\sqrt{x^2+2x}-(x+1)\right)\cdot\left(\sqrt{x^2+2x}+x+1\right)}{\left(\sqrt{x^2+2x}+2\sqrt{x^2+x}+x\right)\cdot\left(\sqrt{x^2+2x}+x+1\right)}=\\ =\lim_{x\to{+\infty}}\frac{-2x^2}{\left(\sqrt{x^2+2x}+2\sqrt{x^2+x}+x\right)\cdot\left(\sqrt{x^2+2x}+x+1\right)} =\lim_{x\to{+\infty}}\frac{-2}{\left(\sqrt{1+\frac{2}{x}}+2\sqrt{1+\frac{1}{x}}+1\right)\cdot\left(\sqrt{1+\frac{2}{x}}+1+\frac{1}{x}\right)} =\frac{-2}{4\cdot{2}}=-\frac{1}{4}. [/math]

Ответ

[math]-\frac{1}{4}[/math]