0386-1

Курс
Высшая математика
→ Узнать подробности
Онлайн-занятия
От создателя Решебника
Материал из Решебника

Информация о задаче

Задача №386 параграфа №4 главы №2 "Предел. Непрерывность" книги Г.Н. Бермана "Сборник задач по курсу математического анализа" (22-е издание, 2002 год).

Условие задачи

Найти предел [math]\lim_{x\to{1}}\frac{\arcsin{x}}{\tg\frac{\pi{x}}{2}}[/math].

Решение

[dmath] \lim_{x\to{1}}\frac{\arcsin{x}}{\tg\frac{\pi{x}}{2}} =\lim_{x\to{1}}\left(\arcsin{x}\cdot\ctg\frac{\pi{x}}{2}\right) =\frac{\pi}{2}\cdot{0} =0. [/dmath]

Ответ

0

Заметили ошибку, опечатку, или неправильно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).
Отблагодарить автора и помочь проекту "Решебник" можно тут:
  • ЮMoney: 41001470069426
  • WebMoney: Z207266121363
Собранные средства расходуются на поддержание работы сайта (доменное имя, хостинг и т.д.).