0325-1
Информация о задаче
Задача №325 параграфа №4 главы №2 "Предел. Непрерывность" книги Г.Н. Бермана "Сборник задач по курсу математического анализа" (22-е издание, 2002 год).
Условие задачи
Найти предел [math]\lim_{x\to{0}}\frac{\tg{x}-\sin{x}}{x^3}[/math].
Решение
[dmath] \lim_{x\to{0}}\frac{\tg{x}-\sin{x}}{x^3}=\left|\frac{0}{0}\right| =\lim_{x\to{0}}\frac{\frac{\sin{x}}{\cos{x}}-\sin{x}}{x^3} =\lim_{x\to{0}}\frac{\sin{x}\cdot\left(\frac{1}{\cos{x}}-1\right)}{x^3}=\\ =\lim_{x\to{0}}\frac{\sin{x}\cdot\left(1-\cos{x}\right)}{x^3\cdot\cos{x}} =\lim_{x\to{0}}\frac{\sin{x}\cdot{2}\sin^2\frac{x}{2}}{x^3\cdot\cos{x}} =\frac{1}{2}\cdot\lim_{x\to{0}}\left(\frac{\sin{x}}{x}\cdot\left(\frac{\sin\frac{x}{2}}{\frac{x}{2}}\right)^2\cdot\frac{1}{\cos{x}}\right) =\frac{1}{2}\cdot{1}\cdot{1^2}\cdot{1} =\frac{1}{2}. [/dmath]
Ответ
[math]\frac{1}{2}[/math]