0307-1
Реклама
Материал из Решебника
Информация о задаче
Задача №307 параграфа №4 главы №2 "Предел. Непрерывность" книги Г.Н. Бермана "Сборник задач по курсу математического анализа" (22-е издание, 2002 год).
Условие задачи
Найти предел [math]\lim_{x\to\infty}\left(\sqrt{x^2+1}-\sqrt{x^2-1}\right)[/math].
Решение
[dmath] \lim_{x\to\infty}\left(\sqrt{x^2+1}-\sqrt{x^2-1}\right)=\\ =\lim_{x\to\infty}\frac{\left(\sqrt{x^2+1}-\sqrt{x^2-1}\right)\left(\sqrt{x^2+1}+\sqrt{x^2-1}\right)}{\sqrt{x^2+1}+\sqrt{x^2-1}} =\lim_{x\to\infty}\frac{2}{\sqrt{x^2+1}+\sqrt{x^2-1}} =0. [/dmath]
Ответ
0
Заметили ошибку, опечатку, или неправильно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).